Repetitive deformation activates Src-independent FAK-dependent ERK motogenic signals in human Caco-2 intestinal epithelial cells.

نویسندگان

  • Lakshmi S Chaturvedi
  • Christopher P Gayer
  • Harold M Marsh
  • Marc D Basson
چکیده

Repetitive deformation due to villous motility or peristalsis may support the intestinal mucosa, stimulating intestinal epithelial proliferation under normal circumstances and restitution in injured and inflamed mucosa rich in tissue fibronectin. Cyclic strain enhances Caco-2 and IEC-6 intestinal epithelial cell migration across fibronectin via ERK. However, the upstream mediators of ERK activation are unknown. We investigated whether Src and FAK mediate strain-induced ERK phosphorylation and migration in human Caco-2 intestinal epithelial cells on fibronectin. Monolayers on tissue fibronectin-precoated membranes were subjected to an average 10% repetitive deformation at 10 cycles/min. Phosphorylation of Src-Tyr 418, FAK-Tyr 397-Tyr 576-Tyr 925, and ERK were significantly increased by deformation. The stimulation of wound closure by strain was prevented by Src blockade with PP2 (10 micromol/l) or specific short interfering (si)RNA. Src inhibition also prevented strain-induced FAK phosphorylation at Tyr 397 and Tyr 576 but not FAK-Tyr 925 or ERK phosphorylation. Reducing FAK by siRNA inhibited strain-induced ERK phosphorylation. Transfection of NH2-terminal tyrosine phosphorylation-deficient FAK mutants Y397F, Y576F-Y577F, and Y397F-Y576F-Y577F did not prevent the activation of ERK2 by cyclic strain, but a FAK mutant at the COOH terminal (Y925F) prevented the strain-induced activation of ERK2. Although the Y397F-Y576F-Y577F FAK construct exhibited less basal FAK-Tyr 925 phosphorylation under static conditions, it nevertheless exhibited increased FAK-Tyr 925 phosphorylation in response to strain. These results suggest that repetitive deformation stimulates intestinal epithelial motility across fibronectin in a manner that requires both Src activation and a novel Src-independent FAK-Tyr 925-dependent pathway that activates ERK. This pathway may be an important target for interventions to promote mucosal healing in settings of intestinal ileus or fasting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delineating the signals by which repetitive deformation stimulates intestinal epithelial migration across fibronectin.

Repetitive strain stimulates intestinal epithelial migration across fibronectin via focal adhesion kinase (FAK), Src, and extracellular signal-related kinase (ERK) although how these signals act and interact remains unclear. We hypothesized that PI3K is central to this pathway. We subjected Caco-2 and intestinal epithelial cell-6 cells to 10 cycles/min deformation on flexible fibronectin-coated...

متن کامل

ILK mediates the effects of strain on intestinal epithelial wound closure.

The intestinal epithelium is subjected to repetitive deformation during normal gut function by peristalsis and villous motility. Such repetitive strain promotes intestinal epithelial migration across fibronectin in vitro, but signaling mediators for this are poorly understood. We hypothesized that integrin-linked kinase (ILK) mediates strain-stimulated migration in intestinal epithelial cells c...

متن کامل

Collagen IV regulates Caco-2 migration and ERK activation via alpha1beta1- and alpha2beta1-integrin-dependent Src kinase activation.

Our previous work indicates intestinal epithelial cell ERK activation by collagen IV, a major component of the intestinal epithelial basement membrane, requires focal adhesion kinase (FAK) and suggests FAK and ERK may have important roles in regulating intestinal epithelial cell migration. We therefore sought to identify FAK downstream targets regulating intestinal epithelial cell spreading, mi...

متن کامل

Src and focal adhesion kinase mediate mechanical strain-induced proliferation and ERK1/2 phosphorylation in human H441 pulmonary epithelial cells.

Pulmonary epithelial cells are exposed to repetitive deformation during physiological breathing and mechanical ventilation. Such deformation may influence pulmonary growth, development, and barotrauma. Although deformation stimulates proliferation and activates extracellular signal-regulated kinases (ERK1/2) in human pulmonary epithelial H441 cells, the upstream mechanosensors that induce ERK a...

متن کامل

p130cas but not paxillin is essential for Caco-2 intestinal epithelial cell spreading and migration on collagen IV.

We have previously observed that collagen IV regulates Caco-2 intestinal epithelial cell spreading and migration via Src kinase and stimulates Src-dependent tyrosine phosphorylation of p130cas. We observed that collagen IV also stimulated Src-dependent phosphorylation of both paxillin Tyr31 and paxillin Tyr118. Caco-2 transfection with paxillin or p130cas siRNAs inhibited expression of these pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 294 6  شماره 

صفحات  -

تاریخ انتشار 2008